
¹³C-NMR SPECTRAL DATA FOR SUBSTITUTED THIENO[2,3-*b*]- AND THIENO[3,2-*b*]PYRIDINES AND THE CORRELATION OF IPso SUBSTITUENT CHEMICAL SHIFTS

LeRoy H. Klemm* and John N. Louris
Department of Chemistry, University of Oregon, Eugene, Oregon 97403-1253, USA

Abstract: The ^{13}C NMR chemical shifts in CDCl_3 for the parent thieno[2,3-*b*]- and thieno[3,2-*b*]pyridines and 44 of their monosubstituted derivatives are reported. Linear correlations of ipso substituent chemical shifts in these compounds and in the corresponding benzene derivatives are found and are compared with reported data for compounds with substituted pyridine or thiophene rings. In the two thienopyridine systems the slope of the correlation line characterizes the position of substitution with respect to the heteroatom in the substituted ring.

Introduction

Various research groups obtained ^{13}C NMR spectra of a number of simple monosubstituted thiophenes (1,2), pyridines (3), thienothiophenes (4), and isoquinolines (5). These workers directed special attention to the ipso substituent chemical shift (ISCS), i.e. the difference in chemical shifts between the substituted carbon atom in the derivative and that in its parent compound (with H attached to the carbon). Meanwhile, literature ISCS values for monosubstituted benzenes were accumulated in a table by Ewing (6), who noted that theoretical calculations were inadequate to account for these data (7). Nonetheless, as shown in references 1-5, if one keeps the solvent and the position of substitution on the heterocyclic ring constant one obtains a linear plot for ISCS for the heterocyclic system versus ISCS for the same array of substituents in the benzene system. In the present paper we report ^{13}C NMR data for chemical shifts in the parent system thieno[2,3-*b*]pyridine **1** and 25 of its derivatives **2-26**, as well as the parent system thieno[3,2-*b*]pyridine **27** and 19 of its derivatives **26-46** (see Tables 1 and 2). Data derived from ISCS plots are also presented (see Tables 3 and 4).

Experimental and Procedure

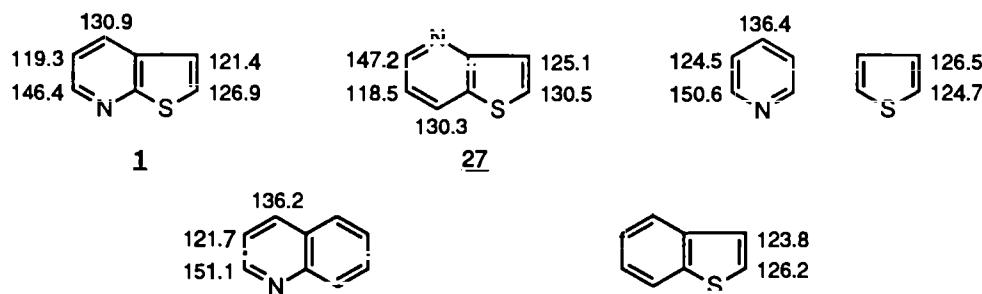
Compounds **1-46** were available from previous studies (8-17) and were converted to analytical purity before use. ^{13}C NMR spectra were obtained on a Nicolet NTC-360 FT NMR instrument with 12-mm tubes containing 0.2-6% (wt/wt) solutions of these compounds in CDCl_3 , plus tetramethylsilane as an internal standard. Both proton-coupled and proton-decoupled spectra were used, to aid in the positional assignments of frequencies and to correlate specific ^{13}C signals with specific ^1H signals previously reported. ^{13}C chemical shifts for system **1** are given in Table 1, while those for system **27** are shown in Table 2. Data are estimated to be accurate to ± 0.1 ppm in most cases. One-bond CH coupling constants

were also measured for the protons in the thiophene rings of the parent systems **1** and **27** as well as their 2- and 3-mono-substituted derivatives **2-9** and **28-38** to an accuracy of ± 1 Hz. Thienopyridine ISCS values for those functional groups which also appear in the table of Ewing (6) are collected in Table 3. These thienopyridine values were plotted versus those for the benzene system by means of a Mathcad computer program (18) which determines the least-squares linear fit of the data and calculates the slope *k* and intercept *c* of the line as well as the correlation coefficient *r* for the data. The numerical results are presented in Table 4.

Table 1: ¹³C NMR Chemical Shifts (δ) for Substituted Thieno[2,3-*b*]pyridines^a

Comp.	Substituent	C-2	C-3	C-3a	C-4	C-5	C-6	C-7a	Other C ^b
1	none	126.9	121.4	132.4	130.9	119.3	146.4	161.8	
2	2-C(=O)H	143.0	130.6	132.1	133.8	120.5	150.3	163.6	184.8
3	2-C(=O)CH ₃	143.6	127.0	132.8	133.5	120.3	149.7	163.5	192.1
4	3-NO ₂	132.4	140.2	124.4	132.2	121.9	148.7	159.3	
5	3-NH ₂	100.4	136.1	126.9	127.5	118.5	146.7	161.0	
5	3-NHC(=O)CH ₃	114.0	126.7	126.4	127.4	118.9	147.0	159.6	168.5
7	3-Cl	121.4	118.8	129.8	129.4	119.8	147.6	159.6	
8	3-Br	124.2	105.2	131.3	130.7	120.0	147.5	159.9	
9	3-I	129.9	75.3	134.1	132.7	120.3	147.5	160.0	
18	4-CH ₃	126.1	119.6	132.7	142.0	120.2	146.5	161.6	19.1
11	4-Cl	127.8	119.7	131.5	138.5	119.6	146.9	162.6	
12	4-NH ₂	123.4	116.9	120.4	148.1	104.0	147.7	163.0	
13	5-Cl	129.4	120.8	133.3	130.2	128.3	145.5	159.5	
14	5-NO ₂	131.1	122.2	130.7	126.1	141.8	141.4	166.5	
15	5-NH ₂	127.8	120.7	133.1	115.3	139.7	137.3	152.4	
16	5-CN	130.1	121.3	131.6	134.4	105.4	147.7	164.8	117.3
17	5-C(=O)CH ₃	128.7	122.2	132.0	130.8	128.7	146.6	165.5	196.6
18	5-C(=O)OCH ₃	128.6	122.0	132.0	132.5	122.2	147.2	165.3	166.1
19	5-CH ₂ CH ₃	127.1	121.2	132.6	129.8	135.2	147.3	159.4	26.0
20	6-Cl	127.4	121.1	131.3	133.1	120.1	147.9	161.1	
21	6-CN	132.1	121.5	134.7	131.6	123.4	129.4	162.2	117.6
22	6-C(=O)CH ₃	131.0	121.5	134.9	131.3	117.4	150.5	160.7	199.7
23	6-C(=O)NH ₂	130.0	121.6	134.8	131.9	118.2	146.5	160.2	166.7
24	6-C(=S)NH ₂	130.6	121.6	134.7	131.4	121.1	147.4	159.3	195.6
25	6-C(=NH)NH ₂	129.0	121.5	133.6	131.6	116.7	147.8	160.3	160.8
26	6-C(=NH)OCH ₃	129.4	121.3	133.8	131.8	116.9	144.5	161.3	166.7
									54.0

a) Chemical shifts are in ppm from tetramethylsilane in CDCl₃ as solvent. b) Listed in order of the carbon atoms in the substituent as shown in the second column.


Table 2: ^{13}C NMR Chemical Shifts (δ) for Substituted Thieno[3,2-*b*]pyridines^a

Comp.	Substituent	C-2	C-3	C-3a	C-5	C-6	C-7	C-7a	Other C ^b
27	none	130.5	125.1	156.0	147.2	118.5	130.3	133.0	
23	2-Cl	137.2	124.1	154.9	147.7	119.0	129.5	133.1	
29	2-Br	120.9	127.9	155.7	147.6	118.9	129.3	135.1	
30	2-I	84.1	134.8	156.6	147.4	118.7	128.9	138.3	
31	2-C(=O)H	145.9	134.6	154.6	149.0	121.7	131.4	136.9	184.6
32	2-CH ₂ OH	151.1	121.1	155.6	146.7	118.5	130.6	133.7	60.5
33	2-C(=O)CH ₃	146.9	130.2	155.1	148.6	121.2	131.0	136.9	192.1
34	2-CN	113.8	135.7	153.4	149.4	121.5	130.5	135.4	113.8
35	3-Cl	124.8	122.8	150.5	147.9	119.6	131.0	132.2	
36	3-Br	127.4	110.0	151.8	148.1	119.5	130.9	132.1	
37	3-I	132.5	82.3	154.5	148.2	119.4	130.6	131.4	
38	3-NO ₂	135.4	142.2	145.6	150.0	120.7	131.4	133.0	
39	5-Cl	132.2	124.5	155.8	149.1	119.3	132.6	131.6	
40	5-CN	133.7	125.0	156.7	130.9	122.1	131.4	136.2	117.7
41	5-C(=O)NH ₂	132.2	124.8	154.7	147.3	117.2	131.4	136.0	167.2
42	5-C(=S)NH ₂	132.5	124.9	153.7	148.4	120.0	131.0	136.0	196.2
43	6-C(=O)CH ₃	135.3	125.2	158.7	147.7	127.5	130.7	132.8	196.2
44	7-Cl	131.4	125.8	157.4	148.0	118.6	138.2	132.9	
45	7-NH ₂	128.0	126.1	157.5	148.6	103.4	147.9	119.3	
46	7-NO ₂	135.5	125.3	160.8	148.3	112.0	148.5	125.2	

a) See footnote a, Table 1. b) See footnote b, Table 1.

Discussion of Results

The following figures compare the ^{13}C NMR chemical shifts for positions in the heterocyclic rings of our parent thienopyridines with those of thiophene, benzo[*b*]thiophene, pyridine and quinoline—all compared to trimethylsilane as a reference (19,20).

First one notes that the chemical shifts of the α , β and γ carbons, respectively, in the pyridine rings of **1** and **27** are closely similar, i.e. less than one ppm different. Thus, the orientation of the fused thiophene ring in the two systems has very little

difference in its interring effect. The order of the shifts is $\alpha > \gamma > \beta$, the same as in pyridine and quinoline, though the fused thiophene ring causes all of the shifts to be smaller in **1** and **27**. In contrast, signals for C-2 and C-3 in the thiophene ring of **27** fall 3.6-3.7 ppm downfield from those of **1**. The order of shifts 2- > 3- for the thienopyridines is the same as reported for benzo[*b*]thiophene (20), but the reverse of the order for thiophene (19). Therefore, to corroborate our positional assignments of the C-2 and C-3 signals in **1** and **27** we also measured the one-bond CH coupling constants ($^1J_{CH} = 184$ and 170 Hz, respectively, in **1** and 186 and 172 Hz in **27**). These were then compared with the corresponding coupling constants found in the 3- and 2-monosubstituted derivatives (of known chemical structures) in the two systems ($^1J_{CH} =$ variously 181-192 for **4-9**, 171 for **2** and **3** in system **1**; variously 190-193 for **35-38**, 170-178 for **28-34** in system **27**). For thiophene $^1J_{CH}$ values are 189 for position 2 and 168 for position 3, consistent with the thienopyridine results (21).

Table 3: Ipso ¹³C NMR Substituent Chemical Shifts (ISCS) Calculated for the Thieno[2,3-*b*]pyridine **1**, Thieno[3,2-*b*]pyridine **27** and Benzene **47** Systems^a

Substituent	ISCS ^b			Substituent	ISCS ^b		
	For 1	For 27	For 47^c		For 1^d	For 27^e	For 47^c
2-Cl		6.7	6.3	α -Cl	1.5	1.9	6.3
2-Br		-9.6	-5.8	α -Ac	4.1		8.9
2-I		-46.4	-34.1	α -CN	-17.0	-16.3	-15.7
2-CHO	16.1	15.4	8.4	α -C(=O)NH ₂	0.1	0.1	5.0
2-Ac	16.7	16.4	8.9	β -Cl	9.0		6.3
2-CH ₂ OH		20.6	12.4	β -NO ₂	22.5		19.9
2-CN		-16.7	-15.7	β -NH ₂	20.4		18.2
3-Cl	-2.6	-2.3	6.3	β -Ac	9.4	9.0	8.9
3-Br	-16.2	-15.1	-5.8	β -CN	-13.9		-15.7
3-I	-46.1	-42.8	-34.1	β -CO ₂ Me	2.9		2.0
3-NO ₂	18.8	17.1	19.9	β -Et	15.9		15.6
3-NH ₂	14.7		18.2	γ -Ci	7.6	7.9	6.3
3-NHAc	5.3		9.7	γ -NO ₂		18.2	19.9
				γ -NH ₂	17.2	17.6	18.2
				γ -Me	11.1		9.2

a) Positions of substituents refer only to compounds **1** and **27**. b) ISCS values are in ppm for CDCl₃ as a solvent.

c) See reference 6. d) For compound **1**: $\alpha = 6$, $\beta = 5$, and $\gamma = 4$. e) For compound **27**: $\alpha = 5$, $\beta = 6$, and $\gamma = 7$.

In Table 3 ISCS data are grouped according to (a) the chemical nature of the substituent and (b) the location of the substituent (in systems **1** and **27**) with respect to the heteroatom in its own ring. Thus, for substituents in the thiophene ring (where the S atom is designated as position 1) numbers 2 and 3 represent analogous locations in both systems. In contrast, for substituents in the pyridine ring the Greek letters α , β , and γ are used to show positions relative to the N heteroatom. This grouping shows closely similar numerical ISCS values (12% maximum variation from the average) for the twelve pairs of corresponding thienopyridine derivatives (e.g. the 2-Ac pair, the α -Cl pair, etc.) in Table 3. For the eight chlorothienopyridines listed, one notes a marked effect of ISCS on the position of substitution in the order β - (9.0) > γ - (7.7 ave.) > 2- (6.7) > α - (1.7 ave.) > 3- (-2.5 ave.). The more limited nitro and amino compounds fall in the same partial

order β - \rightarrow γ \geq 3-, while the acetyl compounds give an altered order 2- \rightarrow β - \rightarrow α -. For chlorothiophenes the positional order is also 2- (4.1) \geq 3- (-1.6) (2); while for chloropyridines it is β - (8.2) \geq α - (1.4) (3,22) and for chloroquinolines one has γ - (6.7) \geq α - (0.2) (23).

Table 4: Linear Regression Data for Plots of ^{13}C NMR Ipso Substituent Chemical Shifts (ISCS) in Thiophene *T* and Pyridine *P* Rings versus ISCS in Benzene *B* Rings

$$\text{Equation: ISCS}_{T \text{ or } P} = k(\text{ISCS}_B) + c$$

Parent Comp.	Substituted Position	Solvent ^a	Slope <i>k</i>	Intercept <i>c</i>	No. of Points, <i>n</i>	Corr. Coeff., <i>r</i>	Reference
1 & 27	2- <i>T</i>	C	1.427	2.25	9	0.992	— ^b
1 & 27	3- <i>T</i>	C	1.143	-6.34	10	0.991	— ^b
1 & 27	α - <i>P</i>	C	0.830	-3.21	7	0.987	— ^b
1 & 27	β - <i>P</i>	C	1.014	1.14	8	0.995	— ^b
1 & 27	γ - <i>P</i>	C	0.875	1.61	6	0.988	— ^b
<i>T</i>	2- <i>T</i>	A	1.37	-0.55	11	0.96	(2) ^c
<i>T</i>	3- <i>T</i>	A	1.17	-2.38	9	0.96	(2) ^c
<i>T</i>	2- <i>T</i>	N	1.514	0.58	6	0.991	(1)
<i>T</i>	3- <i>T</i>	N	1.343	-1.99	6	0.980	—(1)
48	2- <i>T</i>	A	1.273	0.94	8	0.922	(4)
49	2- <i>T</i>	A	1.087	3.66	8	0.929	(4)
<i>P</i>	α - <i>P</i>	N ^d	0.604	2.16	10	0.927	(3)
<i>P</i>	β - <i>P</i>	N ^e	0.861	0.93	8	0.997	(3)
<i>P</i>	γ - <i>P</i>	N ^f	0.999	0.15	10	0.988	(3)
IsoQ ^g	1- <i>P</i> ^h	C	0.483	-4.76	7	0.951	(5)
IsoQ ^g	3- <i>P</i> ^h	C	0.755	-3.44	7	0.985	(5)
IsoQ ^g	4- <i>P</i> ⁱ	C	0.849	3.69	7	0.991	(5)

a) A = acetone-d₆; C = CDCl₃; N = neat or none. b) This study. c) Data taken directly from the reference. d) Exception: one solid was measured in CCl₄ as solvent. e) Exceptions: two solids were measured in CCl₄. f) Exceptions: one solid was measured in dioxane and another, in ethanol. g) Isoquinoline. For the isoquinoline substituents NC₅H₁₀ and OEt, reported benzene values are used for NC₆H₁₂ and OMe, instead. h) These positions are alpha to the heteronitrogen atom. i) Beta to the nitrogen atom. j) Exception: one compound was measured in CDCl₃-CD₃OD.

Table 4 gives data for the linear regression plots of ISCS for our monosubstituted thienopyridine systems versus ISCS for the same array of monosubstituted benzenes. In accordance with the data in Table 3 and the discussion in the previous paragraph five separate plots were made for the combined systems **1** and **27**, namely for substitutions at positions 2, 3, α , β , and γ . The large values (0.987-0.995) for the correlation coefficients *r* for these plots reflect the accuracy of measurements shown in Tables 1 and 2 and serve to justify the combination of data from the two thienopyridine systems.

We propose to designate the slope *k* as a ^{13}C NMR sensitivity factor, the value of which depends on the nature of the parent system, the position of substitution, and the solvent used. The standard of reference is benzene, for which *k* = 1 in whatever solvent is chosen. From the data in Table 4 one notes that the ^{13}C NMR chemical shift for either C-2 or C-3 in a thiophene ring is more responsive to changes in the nature of the substituent than is the ipso carbon in benzene and

that the effect on C-2 exceeds that on C-3. For the two thienopyridines, changing substituents in the α or γ positions elicit similar responses which are less than in benzene, while such changes in the β position give a response about the same as in benzene. Substitutions into pyridine or the heterocyclic ring of isoquinoline again show low sensitivity factors. We are not ready to offer a theoretical explanation of these results at this time.

Compounds **24-26** and **42** are not included in Table 3 because their substituents, viz. thiocarbamoyl, guanyl and methyl imidate are not listed in Ewing's table. From the regression equations one can estimate values of 5.1, 5.6, and 1.6, respectively, for these benzene ISCS values in CDCl_3 .

Conclusions

From data on the ¹³C NMR chemical shifts of thieno[2,3-*b*]pyridine and thieno[3,2-*b*]pyridine plus 44 monosubstituted derivatives of these parent compounds one obtains linear relationships between ipso substituent chemical shifts (ISCS) in the thienopyridine systems versus those in the benzene system. The slope *k* of the regression line is dependent on the specific position of substitution in the thiophene or pyridine ring. Values of *k* (termed sensitivity factors) are larger for substitution into the thiophene ring than for substitution into the pyridine ring.

References and Notes

- (1) K. Takahashi, T. Sone and K. Fujeda, *J. Phys. Chem.* **74**, 2765 (1970)
- (2) S. Gronowitz, I. Johnson and A.-B. Hörfeldt, *Chem. Scr.* **Z**, 85 (1975)
- (3) H. L. Retcofsky and R. A. Friedel, *J. Phys. Chem.* **Z1**, 3592 (1967); **Z2**, 290, 2619 (1968)
- (4) S. Gronowitz, I. Johnson and A. Bugge, *Acta Chem. Scand.* **B30**, 417 (1976)
- (5) A. van Veldhuizen, M. van Dijk and G. M. Sanders, *Org. Magn. Reson.* **13**, 105 (1980)
- (6) D. F. Ewing, *Org. Magn. Reson.* **12**, 499 (1979)
- (7) See also J. D. Memory and N. K. Wilson, *NMR of Aromatic Compounds*, John Wiley, New York, 1982, Chap. 4
- (8) L. H. Klemm and R. Zell, *J. Heterocycl. Chem.* **5**, 773 (1968)
- (9) L. H. Klemm, C. E. Klopfenstein, R. Zell, D. R. McCoy and R. A. Klemm, *J. Org. Chem.* **34**, 347 (1969)
- (10) L. H. Klemm, I. T. Barnish and R. Zell, *J. Heterocycl. Chem.* **Z**, 81 (1970)
- (11) L. H. Klemm, R. Zell, I. T. Barnish, R. A. Klemm, C. E. Klopfenstein and D. R. McCoy, *J. Heterocycl. Chem.* **Z**, 373 (1970)
- (12) L. H. Klemm, R. E. Merrill, F. H. W. Lee and C. E. Klopfenstein, *J. Heterocycl. Chem.* **11**, 205 (1974)
- (13) L. H. Klemm and R. E. Merrill, *J. Heterocycl. Chem.* **11**, 355 (1974)
- (14) L. H. Klemm and R. Hartling, *J. Heterocycl. Chem.* **13**, 1197 (1976)
- (15) L. H. Klemm and D. R. Muchiri, *J. Heterocycl. Chem.* **20**, 213, 1717 (1983)
- (16) L. H. Klemm and J. N. Louris, *J. Heterocycl. Chem.* **21**, 785 (1984)
- (17) L. H. Klemm, J. N. Louris, W. Boisvert, C. Higgins and D. R. Muchiri, *J. Heterocycl. Chem.* **22**, 1249 (1985)
- (18) Mathcad-3.1, MathSoft, Inc., 201 Broadway, Cambridge, MA 02139, USA
- (19) J. B. Stothers, *Carbon-13 NMR Spectroscopy*, Academic Press, New York, 1972, pp 251, 256, 262
- (20) P. D. Clark, D. F. Ewing and R. M. Scrowston, *Org. Magn. Reson.* **8**, 252 (1976)
- (21) T. F. Page, T. Alger and D. M. Grant, *J. Am. Chem. Soc.* **87**, 5333 (1965)
- (22) Note that one must change the sign on the reported data to conform with our scale.
- (23) J.-A. Su, E. Siew, E. V. Brown and S. L. Smith, *Org. Magn. Reson.* **11**, 565 (1978)

Received July 14, 1995